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Coexistence of stationary and traveling waves in reaction-diffusion-advection systems
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The flow- and diffusion-distributed structures~FDS! and the differential-flow instability~DIFI! are mecha-
nisms that give rise to static and traveling waves in reactive flows with general, species-dependent transport
terms. Here we consider a general framework which supports the simultaneous existence of FDS and DIFI
patterns. We study the necessary conditions for each instability in general and compare them in order to derive
their connection. The interaction between FDS and DIFI patterns gives rise to interesting wave behavior
including stationary, upstream, and downstream traveling waves as well as an interesting regime where sta-
tionary and traveling waves coexist.
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I. INTRODUCTION

Over the last decade a wide variety of spatiotempo
structures have been documented in systems of reac
diffusion-advection~RDA! equations. Prominent example
such as traveling and stationary waves are known to oc
via the flow- and diffusion-distributed structures~FDS! @1#
and differential-flow instability~DIFI! scenarios@2,11#. We
recently extended the theory to open reactive flows wit
fixed inflow boundary condition and proposed a general s
nario that gives rise to stable stationary, space periodic
terns@1,3#. The mechanism of flow- and diffusion-distribute
structures~FDS! is robust@3# and has none of the limitation
of the Turing scenario@4#. Furthermore, in the limit of van-
ishing flow it recovers the Turing mechanism. The intera
tion of FDS and Turing instabilities was studied in@3#. The
particular case of stationary waves in an oscillatory medi
with equal flow and diffusion rates was proposed theor
cally in @5# and was subsequently demonstrated experim
tally in @6#. Other recent theoretical studies modeling t
FDS waves have been reported using the classical mode
a cross-flow reactor@7# and the Oregonator@8# and Brussela-
tor @9# models. Those papers have presented scenarios
complex spatiotemporal patterns in such systems.

Similarly, it was recently shown that traveling waves ar
when the boundary condition at the inflow region is tim
periodic @10#. It was shown that the gene-expression wav
that precede the formation of somites~the precursors of ver
tebrae! in chick and mouse embryos arise by a FDS mec
nism that involves axial growth, coupled with periodic for
ing at the growth zone. The connection betwe
developmental biology and open flows comes from the r
ognition of the equivalence of axial growth and open flo
@10#.

In this Brief Report we discuss the link between DIFI a
FDS and observe an interesting wave behavior arising f
the interaction of the two. The analytical results are deriv
in Sec. II. In Sec. III the results are illustrated numerica
for the cubic autocatalator scheme@11#. A subsequent study
of the Oregonator system@12#, FitzHugh-Nagumo@13#, and
the chlorine iodide malonic acid~CIMA ! reaction@14# mod-
els suggests that the present scenario is quite unive
These results will be presented elsewhere@15#.
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II. REACTION-DIFFUSION-ADVECTION SYSTEMS WITH
GENERAL DIFFUSION AND FLOW RATES

We consider a general reaction-diffusion-advection mo
that allows for arbitrary differential rates of flow and diffu
sive transport of the key reactive species. This RDA syst
admits a variety of instabilities, among them FDS@1,3,5,6#,
DIFI ~or differential-flow! @2,11#, and Turing@4# instabilities.
Here we are interested in the possible coexistence and in
acting behavior of FDS and DIFI patterns. The general eq
tions for a one-dimensional spatial domain are

]a

]t
5d

]2a

]x2 2f
]a

]x
1 f ~a,b!, ~2.1!

]b

]t
5

]2b

]x2 2rf
]b

]x
1g~a,b!, ~2.2!

wherea, b, t, andx are the dimensionless concentration
time, and distance along the reactor (t.0, 0,x,`). As the
domain is semi-infinite the effects of the outflow bounda
are negligible.d5Da /Db is the ratio of diffusion coeffi-
cients of speciesa andb. r is the ratio of the advection rate
of the two species, or thedifferential-flow parameter. f is
the dimensionless flow velocity ofb. Without any loss of
generality we assume thatf.0. From now on we shall con
sider that the parametersr and d are independent and tak
the advection ratef as our bifurcation parameter. For th
reaction terms we chose the cubic autocatalator model@11#

f ~a,b!5m2ab2, g~a,b!5ab22b. ~2.3!

This ordinary differential equation~ODE! system has a
single steady stateS5$as51/m, bs5m%, for all m.0. S is
temporally unstable~for the ODE system! for anym<1 and
temporally stable form.1 @3,11#. At m51 there is a super-
critical Hopf bifurcation with periodic solutions existing i
the regionm050.9003<m<15m1 . We now analyze the
conditions for forming nonuniform structures borne out fro
small perturbations to the temporally stable uniform stea
stateS. To do so put

a5as1A, b5bs1B, ~2.4!
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whereuAu!a,uBu!b. We do the calculations in general an
later we specialize the results for the kinetics~2.3!. Substi-
tuting Eq. ~2.4! into Eqs. ~2.1! and ~2.2! we obtain, after
linearizing,

]A

]t
5d

]2A

]x2 2f
]A

]x
1a11A1a12B, ~2.5!

]B

]t
5

]2B

]x2 2rf
]B

]x
1a21A1a22B, ~2.6!

where a115] f /]a , a125] f /]b , a215]g/]a , and a22
5]g/]b are evaluated atS.

The conditions for spatiotemporal instability are satisfi
when the spectrum of the linearized operator for the sys
~2.5!, ~2.6! enters the right-hand plane. Using the exponen
solution ansatzA,B;exp@vt1ik(v)x#, wherev is the eigen-
value andk is the wave number of the perturbation, a
substituting into Eqs.~2.5! and ~2.6! gives thedispersion
relation

D~v,k!5v21@~11d!k22Tr1 ikf~11r !#v1dk4

1 ifk3~11rd!2k2~a111da221rf2!

2 ikf~ra111a22!1D, ~2.7!

where

Tr5a111a22,0, D5a11a222a12a21.0. ~2.8!

Equation ~2.8! implies that min$a11,a22%,0. Without re-
stricting the generality we shall henceforth assume thata11
,0. Clearly there are two main cases of instability possi
through a primary bifurcation, namely, whenv50, corre-
sponding to a steady or FDS bifurcation~the Turing case is
included!, or when Re(v)50, Im(v)Þ0, corresponding to a
periodic solution~Hopf or DIFI bifurcation!.

A. FDS instabilities

The FDS situation has been analyzed for some spe
cases before@1,3#. For the general case the critical FDS flo
is given by

fFDS
2 52

~11r 2d2!a12a211r ~a112da22!
212da12a21r

r ~11rd!~a11r 1a22!
~2.9!

for rÞ0 and ra111a22Þ0. Generically, Eq.~2.9! has a
strictly positive minimumfFDS

c , and the FDS instability is
predicted for allf>max0,r,2a22 /a11

$0,fFDS%. This is simi-

lar to the Turing case which occurs in the domaind>dT
.1 wheredT is the critical Turing ratio of the diffusivities
@3#. Space-periodic FDS waves have purely imaginary w
numberskFDS5 izFDS , zFDS.0 given by

zFDS5Aa11r 1a22

11rd
.0. ~2.10!
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These exist only whenr ,2a22/a11. A more detailed analy-
sis of theneutral curve~2.9! shows thata22.0 anda12a21
,0. Figures 1~a! and 1~b! show typical plots of the neutra
curve~2.9! for kinetics~2.3!. Another feature of the model is
the relative insensitivity of the critical FDS valuefFDS

c to
variations ind as shown in Fig. 1~a!.

B. Differential-flow instability

The case Re(v)50 in Eq.~2.7! leads to a Hopf bifurcation
giving rise to space- and time-periodic traveling DIFI wave
The neutral curvefDIFI (k,d) that corresponds to bifurcatio
to spatiotemporal traveling DIFI solutions is

fDIFI
2 ~k2,d, f ,g!

5
@dk42~a111da22!k

21D#@~11d!k22Tr#2

~r 21!2~a222k2!~dk22a11!k
2

~2.11!

for rÞ1, a222k2Þ0, a112dk2Þ0. From Eq.~2.11! we re-
cover the previously published results for the cases whed
50, r 51, and for the ionic model@11#.

A detailed analysis of the neutral curve~2.11! shows that
the differential-flow instability occurs for anyrÞ1 as fol-
lows. In the FDS regime 0<d<dT , necessary conditions fo
instability are thata11a22,0 anda12a21,0. LetfDIFI

c .0 be
the minimum of the neutral function~2.11! @see Fig. 1~c!#. In
this case we require thatf>fDIFI >fDIFI

c .0. In the Turing
regimed.dT we havefDIFI

c ,0, and for instability we re-
quire thatf>max$0,fDIFI %. In our case traveling waves ar
predicted even if differential diffusion is not present in th
system, i.e., ford51, which is an unusual property for mod
els of differential-flow instability. Figure 1~c! shows a typical
neutral DIFI curve for the model~2.1!, ~2.3! for the cased
51.0, r 50.05,m53.0 givingfDIFI

c 521.65.

C. The relation between FDS and DIFI instabilities

Our analysis shows that FDS and DIFI instabilities c
occur simultaneously for 0<r ,2a22/a11, f
>max$fDIFI ,fFDS%. Then the FDS critical wave numbe
~2.10! is in the range 0,kFDS

2 ,a22. Since the DIFI condi-
tion Re(v)50 is guaranteed at the neutral FDS boundaryv
50 we find from Eqs.~2.9! and ~2.11! that

fFDS
2 5fDIFI

2 ~kFDS
2 !> min

0,k2,a22

fDIFI
2 5~fDIFI

c !2. ~2.12!

Hence the two neutral curves are always tangent atkFDS . In
particular, the DIFI instability is always generated first as t
flow rate f is increased from 0 to large values. We ha
explored these predictions numerically for the system~2.3!.
The result is given in Fig. 1~d!. d51.0, m53.0 gives
2a22/a1150.11. For 0,r ,0.11, as established abov
fFDS>fDIFI . In the range 0.042,r ,0.055 the critical flow
values for FDS and DIFI are relatively close and the tw
critical wave numbers have similar magnitudes. As seen
low @Fig. 2~c!# the stationary FDS waves dominate the b
havior in this range. Outside this traveling and stationa
1-2
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FIG. 1. Neutral FDS curves~2.9! for
the cubic autocatalator model~2.3! for
m53.0 and~a! three different diffusion
ratios d50.1,1,10. ~b! d560. HeredT

5(312&)m2'52.45.~c! Neutral DIFI
curve ~2.11! for the cubic autocatalato
system~2.3! as a function ofk2. Param-
eters:d51.0,r 50.05,m53.0. ~d! Bifur-
cation diagram displaying the neutra
FDS and DIFI flow curves for system
~2.1!, ~2.3!. Parameters:d51.0,m53.0.
The regions with dynamical behavior a
shown in Figs. 2~a!–2~d! below are la-
beled I–V. In region I there are only
backward traveling waves. In region II
FDS and backward DIFI waves coexis
Region III has only FDS waves. In re
gion IV, FDS and forward DIFI waves
coexist. Region V has only forward trav
eling DIFI waves.
s

ri-

led
waves may coexist. Figure 1~d! also predicts that for value
of r near a certain vicinity of zero or forr in a certain
vicinity of 0.11 only traveling waves are expected~for such
r ’s the differencefFDS2fDIFI is very large!. Finally note
that for r .0.11 only DIFI waves are predicted withfDIFI
→` as r→12.
03210
III. NUMERICAL SIMULATIONS

In order to illustrate our results we have explored nume
cally the spatiotemporal behavior of the model~2.3!, using
Fig. 1~d! as a guide to choosing parameters. The coup
parabolic system~2.1!, ~2.2! with reaction terms~2.3! was
r
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FIG. 2. Space-time contou
plots of autocatalyst densityb for
the casem53.0,d51.0,f530.0.
Space is horizontal and time vert
cal. ~a! r 50.01. Initially, periodic
upstream traveling DIFI waves ar
formed. However, this structure i
not stable and att;600 an extinct
state ~zero autocatalyst orb;0)
invades the entire domain.~b! r
50.029. A new stable structure o
stationary space-periodic FDS
waves appears behind the leadin
traveling waves. It remains stabl
and is not destroyed by the zer
autocatalyst state.~c! r 50.04. The
only nonuniform patterns are sta
tionary FDS waves. The extinc
state is confined to a small regio
near the outflow boundary.~d! r
50.09. Traveling DIFI and sta-
tionary FDS waves coexist in a
stable manner.
1-3
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integrated using an implicit Crank-Nicolson code with va
able time stepping@3,11#. At the inflow x50 we used a
Dirichlet boundary condition in the form of a constant dev
tion from the uniform steady stateS. At the outflowx5L we
used the free boundary condition]2a/]x2 5 ]2b/]x2 50.
The system was left to evolve for a sufficient long time fo
permanent structure to be established in the full comp
tional domain.

For the reaction kinetics~2.3! we havedT5(312&)m2

~see@1,11#!. Typical results for the case 0,d<dT are shown
in Figs. 2~a!–2~d! for representative parameter values. Co
sistent with our analytical predictions@Fig. 1~a!# the critical
flow fFDS is not sensitive to variations ind. For simulations
it was fixed tod51. On the other hand,fFDS depends sen
sitively on r , the differential-flow rate, as expected from th
above analysis. For Figs. 2~a!–2~d! we fixedm53.0 andf
530.0>fFDS

c '22.0 @see also Fig. 1~d!#. Figure 2~a! shows
a contour plot of the autocatalyst density profile forr
50.01. Following the initial sequential propagation of t
perturbation in the domain, periodic upstream traveling D
waves establish themselves. However, at aboutt;600 an
extinct state with zero autocatalyst (b;0) begins to invade
the whole domain at the outflow boundary. This picture
valid for all r sufficiently small and 0,d,dT . These waves
moving against the flow are interesting especially when co
pared with previous studies@11# which showed that a DIFI
bifurcation is associated with a convective instability at le
when the uniform stationary state is stable as is the pre
case. Asr is increased further, the traveling waves beco
D

ck

in,

V.
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increasingly unstable and split into two parts. The reg
close to the inflow boundary develops into stationary F
waves @Fig. 2~b!#. Between approximativelyr 50.04 and
0.055 only stable stationary waves are formed@Fig. 2~c!#.
For 0.095>r>0.6 there is again a structure composed of t
sections, illustrated by Fig. 2~d!, with the front part forming
downstream propagating high amplitude DIFI waves and
rear section settling into stationary, low amplitude FD
waves ast→`. Finally, for r>2a22/a11'0.11, only down-
stream propagating DIFI waves survive, forming a transi
structure in the domain due to the convective instability
the uniform steady state~not shown!. The overall picture is
much the same in the Turing domain whered.dT5(3
12&)m2.

Further study shows that the above wave behavior i
robust and generic feature among a wide class of autoc
lytic coupled systems of RDA that are widely employed
biological and chemical modeling. In all cases we found t
similar waves arise in systems with the Belouso
Zhabotinskii~BZ! Oregonator@12#, FitzHugh-Nagumo@13#,
and CIMA @14# kinetics. In the BZ-Oregonator case w
found traveling waves that accelerate and decelerate~jump!.
These results will be given elsewhere@15#.
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