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Coexistence of stationary and traveling waves in reaction-diffusion-advection systems
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The flow- and diffusion-distributed structur@SDS) and the differential-flow instabilityDIFI) are mecha-
nisms that give rise to static and traveling waves in reactive flows with general, species-dependent transport
terms. Here we consider a general framework which supports the simultaneous existence of FDS and DIFI
patterns. We study the necessary conditions for each instability in general and compare them in order to derive
their connection. The interaction between FDS and DIFI patterns gives rise to interesting wave behavior
including stationary, upstream, and downstream traveling waves as well as an interesting regime where sta-
tionary and traveling waves coexist.
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I. INTRODUCTION II. REACTION-DIFFUSION-ADVECTION SYSTEMS WITH
GENERAL DIFFUSION AND FLOW RATES

Over the last decade a wide Var'ety of spatlotempo_ral We consider a general reaction-diffusion-advection model
structures have been documented in systems of reactiofs,; ajiows for arbitrary differential rates of flow and diffu-
diffusion-advection(RDA) equations. Prominent examples, gjye transport of the key reactive species. This RDA system
sgch as traveling a.nd stationary waves are known to ocCWqmits a variety of instabilities, among them FPIS3,5,6,
via the flow- and diffusion-distributed structurésDS) [1]  pjpy (or differential-flow [2,11], and Turing[4] instabilities.
and differential-flow instability(DIFI) scenarioq2,11. We  gre we are interested in the possible coexistence and inter-

recently extended the theory to open reactive flows with &ting hehavior of FDS and DIFI patterns. The general equa-
fixed inflow boundary condition and proposed a general sceggons for a one-dimensional spatial domain are

nario that gives rise to stable stationary, space periodic pat-

terns[1,3]. The mechanism of flow- and diffusion-distributed Jda Ja Ja

structuregFDS) is robust{ 3] and has none of the limitations ot 5% - ¢5 +f(a,b), 2.1
of the Turing scenari4]. Furthermore, in the limit of van-

ishing flow it recovers the Turing mechanism. The interac- b 9%b

tion of FDS and Turing instabilities was studied[i8]. The i W—W&Jrg(a,b), (2.2

particular case of stationary waves in an oscillatory medium
with equal flow and diffusion rates was proposed theoreti- ) , i
cally in [5] and was subsequently demonstrated experimen‘%"herea* b,. t, andx are the dimensionless concentrations,
tally in [6]. Other recent theoretical studies modeling thetime, and distance along the reactor(, 0<x<=). As the
FDS waves have been reported using the classical model féomain is semi-infinite the effects of the outflow boundary
a cross-flow reactdi7] and the Oregonatdg] and Brussela- &€ negligible.6=D,/Dy, is the ratio of diffusion coeffi-
tor [9] models. Those papers have presented scenarios fGI€NtS Of speciea andb. r is the ratio of the advection rates
complex spatiotemporal patterns in such systems. of the_ two species, or thdlffe_rentlal-floyv parameter¢ is
Similarly, it was recently shown that traveling waves ariseth® dimensionless flow velocity di. Without any loss of
when the boundary condition at the inflow region is time 9enerality we assume thgt>0. From now on we shall con-
periodic[10]. It was shown that the gene-expression wavesider that the parametersand & are independent and take
that precede the formation of somitéke precursors of ver- the advection ratep as our bifurcation parameter. For the
tebrag in chick and mouse embryos arise by a FDS mechal€action terms we chose the cubic autocatalator middg!
nism that involves axial growth, coupled with periodic forc- ) )
ing at the growth zone. The connection between f(a,b)=u—ab%, g(ab)=ab’—b. 23
developmental biology and open flows comes from the rec-
ognition of the equivalence of axial growth and open flowThis ordinary differential equatiofODE) system has a
[10]. single steady stat8={as=1/u, bs=pu}, for all ©x>0.S'is
In this Brief Report we discuss the link between DIFI andtemporally unstabléfor the ODE systemfor any u<1 and
FDS and observe an interesting wave behavior arising froneemporally stable fou>1 [3,11]. At u=1 there is a super-
the interaction of the two. The analytical results are derivectritical Hopf bifurcation with periodic solutions existing in
in Sec. Il. In Sec. Il the results are illustrated numericallythe region uq=0.9003<xu<1=x,. We now analyze the
for the cubic autocatalator scherffel]. A subsequent study conditions for forming nonuniform structures borne out from
of the Oregonator systefi2], FitzHugh-Nagumd13], and  small perturbations to the temporally stable uniform steady
the chlorine iodide malonic aciCIMA) reaction[14] mod-  stateS. To do so put
els suggests that the present scenario is quite universal.
These results will be presented elsewherg]. a=agt+A, b=b+B, (2.9
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where|A|<a,|B|<b. We do the calculations in general and These exist only when< —ay,/a;;. A more detailed analy-
later we specialize the results for the kinet{@s3). Substi-  sis of theneutral curve(2.9) shows thata,,>0 andaj.a,;
tuting Eq. (2.4) into Egs.(2.1) and (2.2) we obtain, after <0. Figures 1a) and 1b) show typical plots of the neutral

linearizing, curve(2.9) for kinetics(2.3). Another feature of the model is
) the relative insensitivity of the critical FDS valugfyg to
dA A dA variations ind as shown in Fig. (g).
—=0—=—¢—+ + .
at 3 EN: ¢ X ayjA+agB, (2.9
B. Differential-flow instability
2
ﬁ = E —r ¢, + a,A+anB, (2.6) _ '_I'he case Ref)=0in Eq:(2.‘0 Iead; toa Hopf bifurcation
dt giving rise to space- and time-periodic traveling DIFI waves.

The neutral curvebp, g (K, d) that corresponds to bifurcation

where ap;=df/da, ap,=dfldb, axn=dglda, and ax,  to spatiotemporal traveling DIFI solutions is
=dg/db are evaluated &8.

The conditions for spatiotemporal instability are satisfied ¢2D,F,(k2,5,f,g)
when the spectrum of the linearized operator for the system 4 5 5 5
(2.5), (2.6) enters the right-hand plane. Using the exponential [6k™— (a1t da)k™+ A][(1+ H)k™—Tr]

solution ansata, B~ exf wt+ik(w)x], wherew is the eigen- (r—1)*(ag—k?)(8k*—a; )k’
value andk is the wave number of the perturbation, and (2.10)
substituting into Eqs(2.5 and (2.6) gives thedispersion
relation for r#1, a,,—k?>#0, a;;— 6k*#0. From Eq.(2.11) we re-
. cover the previously published results for the cases when
D(w,k)=w?+[(1+8)k*~Tr+ik(1+r)]w+ k* =0, r=1, and for the ionic moddl11].
+i pk3(1+18)— K2(ay+ Sagy+ T ¢?) A Qetailed_ analysi_s of thg neutral cur¢2.11) shows that
the differential-flow instability occurs for any#1 as fol-
—ikg(raj;tag) +A, (2.7 lows. In the FDS regime € < &7, necessary conditions for
instability are that,a,,<0 anda;,a,,<0. Let ¢g >0 be
where the minimum of the neutral functiof2.11) [see Fig. 1c)]. In

this case we require th&t= ¢p = g, > 0. In the Turing
Tr=a;+a,<0, A=anuay—ai18,>0. (28  regimes>s; we have¢g, <0, and for instability we re-
. N , ) quire that¢p=max0,¢pr }. In our case traveling waves are
Equation (2.8) implies that miRay;,a,,)<0. Without re-  yreqicted even if differential diffusion is not present in the
stricting the generality we shall henceforth assume &hat system, i.e., fos=1, which is an unusual property for mod-
<0. Clearly there are two main cases of instability IOOSS'bleels of differential-flow instability. Figure (t) shows a typical

through a primary bifurcation, namely, whes=0, corre- o ra| DIFI curve for the modeR.1), (2.3 for the cases
sponding to a steady or FDS bifurcati¢he Turing case is =1.0,r=0.05, u=3.0 giving ¢S, = 21.65.

included, or when Re@)=0, Im(w)#0, corresponding to a
periodic solution(Hopf or DIFI bifurcation. ) ) .
C. The relation between FDS and DIFI instabilities
A. EDS instabilities Our analysis shows that FDS and DIFI instabilities can

ccur  simultaneousl for Ar<—ayl/a,
The FDS situation has been analyzed for some Spec'aimax{%.p. deod. The)rq the FDS critical wave nurr?ber
cases beforgl,3]. For the general case the critical FDS flow (2.10 is in t'he range &kéDs<a22- Since the DIEI condi-

's given by tion Re)=0 is guaranteed at the neutral FDS boundary
5 (14128%)a1580,+ I (811~ 8899) 2+ 28812801 =0 we find from Eqs(2.9) and(2.11) that
Fos r(1+76)(amr+az) bros=doiri(Keps)= Min - ¢ e =(ddir)>  (2.12

(2'9) 0<k2<a22

for r#0 and ra,,+axn+0. Generically, Eq.(2.9 has a Hence the two neutral curves are always tangeRkgt. In
strictly positive minimumg:_ps, and the FDS instability is particular, the DIFI instability is always generated first as the
: i flow rate ¢ is increased from O to large values. We have
predicted for allp=maxy—;«_a_./a. .{0,¢ps}. This is simi- S )
, 22 i explored these predictions numerically for the syst@a3).
lar to the Turing case which occurs in the domdis 51

The result is given in Fig. ). §=1.0, 3.0 gives
>1 wheredt is the critical Turing ratio of the diffusivities g 9. @. e 9

—ay/a;;=0.11. For 0<r<0.11, as established above,
(9] Sbace-periodic FDS waves have purely IMaginary WavSj.= gy, Inthe range 0.0421 <0.055 the crtcal flow
FDS™ '4FDS» 4FDS

values for FDS and DIFI are relatively close and the two
critical wave numbers have similar magnitudes. As seen be-

S /allr+322>o 2.10 low [Fig. 2(c)] the stationary FDS waves dominate the be-
FDS 1+r6 ' ' havior in this range. Outside this traveling and stationary
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Ys ] ] 4 FIG. 1. Neutral FDS curve€.9) for
00 the cubic autocatalator modéR.3) for
“7 ol n=23.0 and(a) three different diffusion
& (6=1) ratios 6=0.1,1,10.(b) 6=60. Here 51
] ] unstable =(3+2v2) u?~52.45.(c) Neutral DIFI
s 40| curve (2.11) for the cubic autocatalator
aG=0n stable system(2.3) as a function ok?. Param-
1 eters: 5= 1.0y =0.05x=3.0. (d) Bifur-
“o o om  om  oe  ow R S cation diagram displaying the neutral
@ ’ © K? FDS and DIFI flow curves for system
0o ¢‘°°‘ (2.1, (2.3. Parameters5=1.0u=3.0.
s ° The regions with dynamical behavior as
8001 shown in Figs. 2a)—2(d) below are la-
6001 . beled I-V. In region | there are only
400] backward traveling waves. In region ll,
40 FDS and backward DIFI waves coexist.
2001 Region Il has only FDS waves. In re-
8 R S e s e e 1 gion IV, FDS and forward DIFI waves
200 r . coexist. Region V has only forward trav-
o0 02 o4 os o8 eling DIFI waves.
® @ r
waves may coexist. Figurgd) also predicts that for values I1l. NUMERICAL SIMULATIONS
of r near a certain vicinity of zero or for in a certain
vicinity of 0.11 only traveling waves are expectéfdr such In order to illustrate our results we have explored numeri-

r's the differencedrps— ¢pr is very large. Finally note  cally the spatiotemporal behavior of the mod2!3), using
that forr>0.11 only DIFI waves are predicted witfipg, Fig. 1(d) as a guide to choosing parameters. The coupled
—oo asr—17, parabolic systen{2.1), (2.2) with reaction termg2.3) was
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FIG. 2. Space-time contour
plots of autocatalyst density for
the casepn=3.0,6=1.0,¢$=30.0.
Space is horizontal and time verti-
cal. (a) r=0.01. Initially, periodic
upstream traveling DIFI waves are
formed. However, this structure is
not stable and dt~600 an extinct
state (zero autocatalyst ob~0)
invades the entire domairib) r
=0.029. A new stable structure of
stationary space-periodic FDS
waves appears behind the leading
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55 and is not destroyed by the zero

600 5 autocatalyst statéc) r =0.04. The
45 only nonuniform patterns are sta-

o ) tionary FDS waves. The extinct

state is confined to a small region
near the outflow boundaryd) r
=0.09. Traveling DIFI and sta-
tionary FDS waves coexist in a
stable manner.
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integrated using an implicit Crank-Nicolson code with vari- increasingly unstable and split into two parts. The region
able time steppind3,11]. At the inflow x=0 we used a close to the inflow boundary develops into stationary FDS
Dirichlet boundary condition in the form of a constant devia-waves [Fig. 2(b)]. Between approximatively =0.04 and
tion from the uniform steady stafe At the outflowx=L we 0.055 only stable stationary waves are form&iy. 2(c)].
used the free boundary conditioffa/dx? = 9°b/x*=0.  For 0.095=r=0.6 there is again a structure composed of two
The system was left to evolve for a sufficient long time for asections, illustrated by Fig.(&), with the front part forming
permanent structure to be established in the full computagownstream propagating high amplitude DIFI waves and the

tional domain. , rear section settling into stationary, low amplitude FDS
For the reaction kinetic&2.3) we havedr=(3+2v2)u waves ag— . Finally, forr=—a,,/a;;~0.11, only down-

.(see.[l,ll]) . Typical resullts for thg case<05= oy are shown stream propagating DIFI waves survive, forming a transient
n Figs. 2'(a)—2(d) for rgpresenta}twe pa_lrameter valugg. Con'structure in the domain due to the convective instability of
sistent W'th our analy_t|_cal predu_:tl(_)r{Elg. @] the cr|t!cal the uniform steady stat@ot shown. The overall picture is
flow ¢epsis not sensitive to variations i For simulations much the same in the Turing domain whefe- &= (3

it was fixed tod=1. On the other handprps depends sen- +2v2) u.

sitively onr, the differential-flow rate, as expected from the Further study shows that the above wave behavior is a

above anillyss. For Figs(@-2(d) we fixedu=3.0 and¢ 51,5t and generic feature among a wide class of autocata-
=30.0= ¢rps~22.0[see also Fig. ®)]. Figure 2a) shows |vtic coupled systems of RDA that are widely employed in

a contour plot of the autocatalyst density profile for - pigjogical and chemical modeling. In all cases we found that
=0.01. Following the initial sequential propagation of the gimjlar waves arise in systems with the Belousov-
perturbation in the domain, periodic upstream traveling DIFIzhapotinskii(BZ) Oregonatof12], FitzHugh-Nagumd13],
waves establish themselves. However, at aliou600 an  ang CIMA [14] kinetics. In the BZ-Oregonator case we
extinct state with zero autocatalysi-<0) begins to invade found traveling waves that accelerate and deceldfatep).

the whole domain at the outflow boundary. This picture isThese results will be given elsewhdtes).

valid for all r sufficiently small and 82 6< é7. These waves
moving against the flow are interesting especially when com-
pared with previous studigd1] which showed that a DIFI
bifurcation is associated with a convective instability at least
when the uniform stationary state is stable as is the present | thank Michael Menzinge¢Toronto for many useful dis-
case. Asr is increased further, the traveling waves becomecussions.
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